
Java Scientific Containers - an open source generic

large data library for visualization applications

Piotr Wendykier*, Bartosz A. Borucki, Krzysztof S. Nowiński (IEEE Member)

Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw

ABSTRACT

Java Scientific Containers (JSciC) is an open source Java library
providing a generic data type for scientific datasets, primarily for
visualization systems applications. A generic concept of field
represents the dataset with three components - structure, geometry
and values - allowing to represent the majority of numerical data
used in the scientific environment. Not only regular and irregular
(unstructured) grids with implicit or explicit geometry are
supported, but also multiple numeric data components (multivariate
fields) with scalar or vector elements. Flexible time support is
provided by independent time steps. Additional functionality,
including interpolation, slicing and statistics is also available in the
library. Parallel execution arithmetic on data components is
incorporated with full physical units support. JSciC library serves
as a base for generic data representation in VisNow platform.

Keywords: JSciC, scientific visualization, generic data types, Java,
arithmetic, unit support

1 INTRODUCTION

Java Scientific Containers (JSciC) is an open source pure Java
library for generic representation of scientific data. Since JSciC
originated from VisNow [1] - a generic visualization platform in
Java - it is significantly focused on the generic data types for
visualization systems, with multiple integrated analytics or simple
processing tools and numeric I/O data format.
One of the key components of each universal visualization system
is an internal generic data type. In order to support multiple datasets
from different fields of applications and from multiple file formats
in a single visualization system it is crucial to translate every
supported external format to a single internal data type that can be
processed in a unified environment by the components of a
visualization system.
Scientific visualization is the domain where datasets are (usually)
embedded in real space and described by multiple variables, often
time dependent. A generic data type applicable for such solutions
must cover at least the following functionalities: representation of
one-, two- or three-dimensional geometry, representation of
multivariate data, support for different numeric data types, support
for time variability and support for different structural
representations.
In practice, a generic data type can be implemented as a multilevel
object hierarchy, usually with several alternative types at each
hierarchy level.

2 BACKGROUND

The current standard of such generic approach to data types in
visualization applications is the format of VTK library [3].
However, from technical perspective VTK is a C/C++ library and
even though it has multiple wrappers or derived libraries for
different programming languages, including Java, there is no
popular native Java alternative. VTK includes a complete set of

visualization functions, while this work focuses only on scientific
data containers. In addition, a mixed language programming, such
as using a VTK wrapper in Java, is more error prone and much
harder to debug than pure Java solution. Performance comparison
of JSciC and VTK is currently under development.
ImgLib2 [4] is a Java library for n-dimensional data representation
and manipulation. It provides various implementations for pixel
data in a discrete n-dimensional grid as well as popular image
processing algorithms. However, ImgLib2 is not designed for
scientific visualization applications and it does not support
unstructured grids.
JSciC is our proposition of pure-Java implementation of a generic
data type applicable for visualization purposes supporting large
data structures. From technical perspective, due to Java object
memory management, JSciC follows an assumption of storing
numerical and indexation data in flat (one dimensional) arrays as
an alternative to storing object hierarchy (e.g. field → cellset →
cell → wall → edge → cell → wall → edge → node). As Java lacks
true multidimensional arrays, most of numerical libraries in Java
use similar approach to store multidimensional data. However, to
overcome Java limitation of 231 elements in a single array
(equivalent of a 3D regular grid of 12903 scalar elements) JSciC
uses JLargeArrays library [2] to store native memory arrays up to
263 elements. At the same time JLargeArrays provides the
functionality of numeric data types of logic, unsigned byte, short,
int, long, float, double, float complex, double complex, String and
Object. Benchmarks results [2] show that JLargeArrays generally
outperforms both Fastutil library [5] and native Java arrays
especially when multiple threads are used and array sizes are larger
than 231.
From substantial perspective JSciC follows an assumption that to
represent data in a generic manner it is required to define the
generic field object and to provide three elements of the description
- geometry, structure and values. The geometry part of the data
object describes spatial location of points (nodes), the structure part
defines relationships between nodes, forming a data grid, and
finally the values represent certain measurements on each given
node.

3 GENERIC FIELD CONCEPT

JSciC defines a generic data type as “field” and provides two main
subtypes of the field - a regular field and an irregular field.
Nodes in a regular field are organized as one- two- or three-
dimensional regular grid (or array), thus the structure of a such field
is completely determined by its dimensions. The geometry of a
regular field can be determined either by its origin p and unit cell
vectors v0, v1, v2 (a point with the indices i,j,k will be located in
p+i*v0+j*v1+k*v2) or by explicitly given coordinate array in the
case of a regular curvilinear field. JSciC distinguishes these two
types of geometry in a regular field and all visualization algorithms
in VisNow exploit that optimization.
An irregular field, often called an unstructured field, is determined
by a set of nodes and one or more cell sets. JSciC supports point,
segment, triangle, quadrangle, tetrahedron, pyramid, prism and
hexahedron as basic cell types. In addition to node data, cell data
can be defined with different data on each cell set. *p.wendykier@icm.edu.pl

Multivariate values can be defined over nodes or cells and are
related to as “components”. Multiple components can be defined
over one field. Each component brings the numerical values of the
dataset (in one of types determined by JLargeArrays library) with
possibility of linear mapping to physical range with units support
and together with basic statistics on the data. Each data component
can be scalar or vector.
Additionally, field nodes can be masked as valid (visible) or invalid
(invisible) with use of binary mask.
Time dependency is defined for geometry, mask and data
components (structure dependency is under development). The key
concept of time in JSciC is to treat time independently for each
variable (component), mask and geometry, thus multiple different
time steps can be defined for each of them. Additionally the library
provides proper interpolation functionality for any time moment.

4 FUNCTIONALITY

JSciC library provides multiple embedded structure, geometry and
data processing tools as generic utilities or fields’ functionality.
Field resampling, cropping, triangulation and slicing is included in
the library itself, as well as interpolation and arbitrary probing. In
more technical layer, hashcodes and fingerprints are provided as
fast comparison methods.

Figure 1: Example JSciC field description in VisNow of a 3D regular

grid with three data components.

Data components provide basic or extended statistics, including
histograms. Type conversion of data components is also possible
with additional configurable support of NaN and Inf values.
Moreover, library API provides basic data arithmetic at the level of
data components (equivalent of point by point or array operations),
including support for both scalar and vector components. More
importantly, as JSciC supports physical units, all arithmetical
operations also incorporate proper unit calculations (e.g. mass in kg
multiplied by acceleration in m/s2 results in force defined in
Newtons). Most common physical constants with units are
provided in the library for inside calculations. Execution of
arithmetic is as fast as possible, not only utilizing automatic
parallelization on multi-core and multi-CPU architectures, but also
with fallback to fast JLargeArrays library arithmetic where
possible. More advanced arithmetic at fields level (e.g. spatial
gradient) is under migration.
I/O functionality is provided for JSciC fields - reading of all types
of regular and selected irregular fields is possible via the ASCII
header, while the writing format is predefined, similarly in a two-
file manner - header and binary data.
As JSciC development follows the concept of open software, the
source code is available for download from GitLab
(https://gitlab.com/groups/ICM-VisLab/JSciC/).

5 APPLICATIONS AND VISUALIZATION CONTEXT

As JSciC library originated from VisNow environment [1], it was
designed to serve the functionality required for the generic
visualization system. Currently it provides the basic internal data
structures for the VisNow modular visualization system. All
functionalities of JSciC library find its representation in VisNow
system at higher layer and with proper user interface. Detailed
information on field and the components may be presented in
description window (see example in Figure 1.). Both regular and
irregular fields, serving the structure and geometry, provide the
visualization system with primitives and basic structures for
visualization purposes (e.g. 3D cells, see Figure 2.) and represent
the generic fields in regular and irregular grids (see examples in
Figure 3.). Multivariate field data - multiple components - provide
a choice of data for colormapping or other visual layer
representation of a single field. For example, a multivariate 3D field
can be represented with volume rendering technique, where three
data components are mapped to RGB colors and one component is
mapped as transparency. Data arithmetic at component level
provided by JSciC is utilized as component calculator with
expression parser within VisNow module, serving as data generator
or calculator for derived components. VisNow Field data format
(VNF) being a native file format for data fields is a direct usage of
JSciC provided I/O.
JSciC can be useful in applications that require generic data types
defined in a real vector space such as physical simulations and
engineering tools. Provided I/O functionality may be utilized in
simulation codes, where real time visualization can be obtained
without conversion of data formats. Finally, JSciC can be used in
all Java applications that process very large datasets common in
microscopic, medical and cosmological sciences.

Figure 2: Examples of curvilinear regular field (left) and irregular

field on tetrahedral cells (right) as presented in VisNow.

REFERENCES

[1] K.S. Nowiński, B.A. Borucki. VisNow - a Modular Extensible Visual

Analysis Platform. Proc. of 22nd Int. Conf. in Central Europe on

Computer Graphics, Visualization and Computer Vision WSCG2014,

pages 73-76. 2014.

[2] P. Wendykier, B.A. Borucki, K.S. Nowinski. Large Java arrays and

their applications. High Performance Computing & Simulation

(HPCS), 2015 International Conference on, pages 460-467. July

2015.

[3] W. Schroeder, K. Martin, B. Lorensen. The Visualization Toolkit (4th

ed.), Kitware, 2004, ISBN 978-1-930934-19-1.

[4] T. Pietzsch, S. Preibisch, P. Tomancak, S. Saalfeld. ImgLib2 - Generic

Image Processing in Java. Bioinformatics, vol. 28, no. 22, pages 3009–

3011. Nov. 2012.

[5] S. Vigna. Fastutil: Fast and Compact Type-specific Collections for

Java. http://fastutil.dsi.unimi.it/. 2016.

